
Creating a Receiver for an Acoustic Modem

Charlotte Ramiro de Huelbes and Lila Smith

April 2022

1 Introduction

The goal of this project was to implement a receiver for an acoustic modem. The system begins with a string
message which is then converted into bits and up-sampled with a symbol period of 100, creating m(t). This
is then transmitted through an acoustic modem into yt(t), which we processed in our receiver to obtain the
original message.

2 Method

A block diagram of our system is shown in Figure 1. The system begins with m(t), which is then convolved
with a high-frequency cosine wave and transmitted to give yt(t), the input to the receiver. The time and
frequency domain graphs of yt are shown in Figure 2.

m(t) // X
xt // H(jω)

yt // X
yc // LPF

yl // m̃

cos(2πfct)

OO

cos(2πfct)

OO

Figure 1: Block diagram of the entire system. Note that we only aimed to implement the receiver, thus our
project is implemented starting with yt.

Our receiver takes this signal and convolves it in the frequency domain with the same high frequency
cosine wave. The resulting signal yc is shown in Figure 3, while the equations for this are seen below in both
the frequency and time domains.

Yc(jω) = Yr(jω) ∗ π[δ(ω − ω0) + δ(ω + ω0)]

yc(t) = yr(t)× cos(2πfct)

It then multiplies it in the frequency domain through a low pass filter with a cutoff of fc
2 in order to

retrieve the original signal m̃(t). Since this is convolution in the time domain, we convolve yc(t) with a
sinc function (ideal lowpass filter in the time domain). This resulting signal is shown in Figure 4, while the
equation in the time domain is below.

m̃(t) = yr(t) ∗
fc
2π

sinc(
fc
2πt

)

We then used the originally implemented symbol period in order to decode the bits from the signal. We
did this by averaging 100 elements of the m̃(t) matrix at a time (as the symbol period is 100) and converting
them into bits based on if the average value was above or below zero (1 for above and 0 for below). A
representation of this can be seen in Figure 5.

1



0 1 2 3 4 5

Time (s)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x
(t

)

y
t

(a) Time domain graph of short message

0 5 10 15

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x
(t

)

y
t

(b) Time domain graph of long message

-3 -2 -1 0 1 2 3

Frequency (rad/s) 10 4

0

10

20

30

40

50

60

70

80

90

100

|X
(j

)|

y
t

(c) Frequency domain graph of short
message

-3 -2 -1 0 1 2 3

Frequency (rad/s) 10 4

0

100

200

300

400

500

600

700

800

|X
(j

)|

y
t

(d) Frequency domain graph of long mes-
sage

Figure 2: yt: The signal transmitted by the modem, synced to beginning.

0 1 2 3 4 5

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

x
(t

)

y
c

(a) Time domain graph of short message

0 5 10 15

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

x
(t

)

y
c

(b) Time domain graph of long message

-3 -2 -1 0 1 2 3

Frequency (rad/s) 10 4

0

5

10

15

20

25

30

35

40

45

50

|X
(j

)|

y
c

(c) Frequency domain graph of short
message

-3 -2 -1 0 1 2 3

Frequency (rad/s) 10 4

0

100

200

300

400

500

600

700

|X
(j

)|

y
c

(d) Frequency domain graph of long mes-
sage

Figure 3: yc: While the signal looks similar to yt in the time domain, after convolving with cos(2πfct), we
see that in the frequency domain there are now three peaks instead of two.

2



0 2 4 6 8 10

Time (s)

-300

-200

-100

0

100

200

300

x
(t

)

m

(a) Time domain graph of short message

0 5 10 15 20 25 30

Time (s)

-800

-600

-400

-200

0

200

400

600

x
(t

)

m

(b) Time domain graph of long message

-3 -2 -1 0 1 2 3

Frequency (rad/s) 10 4

0

2

4

6

8

10

12

14

16

18

|X
(j

)|

10 4 m

(c) Frequency domain graph of short
message

-3 -2 -1 0 1 2 3

Frequency (rad/s) 10 4

0

0.5

1

1.5

2

2.5

3

|X
(j

)|

10 6 m

(d) Frequency domain graph of long mes-
sage

Figure 4: m: After applying the lowpass filter with cutoff of fc
2 , the signal is much more block-like in the

time domain. We see that in the frequency domain the three peaks have been reduced down to one.

3 Results

Our receiver was able to accurately decode both the short and long messages provided. You can find a video
of this here 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
it
 V

a
lu

e

x
d

0 5 10 15 20 25 30 35 40

k

(a) Time domain graph of short message

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
it
 V

a
lu

e

x
d

0 200 400 600 800 1000

k

(b) Time domain graph of long message

Figure 5: Binary representations of signal after averaging symbol periods to see if they are above zero (so
bit is 1) or below zero (so bit is 0).

1Full text link: https://youtu.be/hvkZI1XzYns

3



A Code Listing

1 load long_modem_rx.mat

2

3 % The received signal includes a bunch of samples from before the

4 % transmission started so we need discard these samples that occurred

5 % before the transmission started.

6

7 start_idx = find_start_of_signal(y_r,x_sync);

8 % start_idx now contains the location in y_r where x_sync begins

9 % we need to offset by the length of x_sync to only include the signal

10 % we are interested in

11 y_t = y_r(start_idx+length(x_sync):end); % y_t is the signal which starts

12 % at the beginning of the transmission

13

14 % Multiply with the same cosine function to recenter original function

15 % We multiply because we want to convolve in the frequency domain

16 t = 0:(1/Fs):(length(y_t)-1)/Fs;

17 c = cos(2*pi*f_c*t);

18 y_c = c .* y_t';

19

20 % Use a lowpass filter to filter high frequencies created with cosine

21 % We convolve because we want to multiply in frequency domain

22 W = 0.5*f_c;

23 h_lowpass = (W/pi)*sinc(W/pi*t);

24 y_l = conv(y_c, h_lowpass);

25

26 % Find average highs and lows per symbol period for message length

27 x_d = zeros([msg_length*8, 1]);

28 for i=1:length(x_d)

29 average = mean(y_l((i-1)*100+1:i*100));

30 x_d(i) = average > 0; % Write a 1 if co

31 end

32

33

34 % convert to a string assuming that x_d is a vector of 1s and 0s

35 % representing the decoded bits

36 BitsToString(x_d)

4


	Introduction
	Method
	Results
	Code Listing

