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1 Huffman Coding

One application of trees is in lossless data compression using Huffman codes. Huffman coding is a
type of prefix code that uses binary trees in order to efficiently encode messages. Prefix codes (also
known as prefix-free binary codes) have the property that no whole codeword is the prefix for any
other codeword. This enables unambiguous parsing of a variable-length code.

Another key property of Huffman coding is that the length of the codeword for a given symbol
is inversely proportional to the frequency of the symbol. As a result, symbols are optimally mapped
to codewords to minimize the length of the encoded message.

We created an implementation of the Huffman coding scheme in Python that would both encode
and decode a message. We used a technique called canonical Huffman coding to enable decoding
of message while limiting the amount of data required to communicate the codeword mappings.

1.1 General Huffman Coding

Huffman coding first requires generating the prefix code for the specific text to be encoded. This
involves constructing a binary tree with branches representing a bit in the codeword and common
symbols near the root. First, leaf nodes are created for each symbol and added to a priority queue
from lowest to highest frequency. Then, the two highest-priority nodes are removed and a new
internal node is created with these two nodes as children and a total frequency equal to the sum
of the children’s frequencies. This node is then enqueued, and the process continues until there
is only one node, the root, remaining in the queue (which will represent an empty codeword and
have all symbols as descendants). A visual representation of the binary tree creation for a short
6-symbol message is shown in Figure 1.

Once the tree is constructed, following a path from root to leaf and appending 0 for a left child
and 1 for a right child will yield the code word for the symbol at the leaf.

Since the encoding generated by the tree is dependent on the frequency of symbols in the original
message, it is necessary for the recipient to be able to reconstruct the encoding. There are several
methods to enable this, and we chose to explore prepending a fixed-length encoding of the canonical
Huffman code corresponding to the derived code.

1.2 Canonical Huffman Coding

Often, to generate a canonical Huffman code, the normal Huffman encoding is found first and
converted to a canonical one. We will consider the canonical Huffman code for the message

“A_DEAD_DAD_CEDED_A BAD_BABE_A BEADED_ABACA _BED”.
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Figure 1: A visualization of the Huffman algorithm its binary tree. This
image was taken from the Wikipedia page for Huffman codes.

Table 1 shows the normal Huffman codes for the characters, listed from highest to lowest
frequencies.

Character Code Word
00

01

10

110

1110

1111

W Q= = !

Table 1: A table of the normal Huffman codes for our sample message.

In order to canonize the normal Huffman code, the original symbol-codeword mapping is sorted
primarily by codeword length and secondarily by alphabetical order of symbol, creating Table 2.
Note that the underscore symbol ranks lower alphabetically than capital letters as per Python
sorting.

Next, each codeword is replaced with one of its same length using the following method:

e The first symbol in the list gets a codeword of its same length but all zeroes.

e Each subsequent symbol is assigned the next binary number in sequence, thus ensuring that
the following codes are higher in value.

e When a longer codeword is reached, after incrementing the binary value, zeroes are appended
until the codeword has the same length as the original codeword (also known as a left shift).

This algorithm produces the codebook in Table 3.


https://en.wikipedia.org/wiki/Huffman_coding#Problem_definition

Code Word
10

01

00

110

1111

1110

Character

g »=

Q|| =t

Table 2: A table of the normal Huffman codes for our sample string ordered
such that we can convert them to canonical codewords.

Code Word
00

01

10

110

1110

1111

Character

ol >

Q|| =it

Table 3: A table of the canonical Huffman codewords for our sample string.

1.3 Decoding

We decided to use canonical codes because simplifies the decoding process by standardizing the
symbol mapping. In order to decode normal Huffman codes, the decoder needs to re-generate the
binary tree from the frequency count of each character, which requires sending a lot of metadata
along with the encoded message. With canonical codes, the message can be decoded with far less
bytes because so much about the codeword assignment is standardized. By transmitting just the
length of all codewords, the symbol mapping can be reconstructed.

We chose this method with the decoding process described below because for an 8-bit symbol
set, exactly 145 bytes are needed to encode the symbol mapping, regardless of the number of
symbols used. This is in contrast to an encoding which transmits specific characters and data
about their positions in the tree, which would require a minimum of 256 bytes just to encode the
symbols if all symbols were used.

To enable decoding of the message, two pieces of data must be created: min cw[ ] and
cw_to_char[ ][ ]. min_cw[i] represents the numerical value of the minimum codeword of length
i, while cw_to_char[i][j] shows the jth symbol with a codeword of length i. For example,
cw_to_char[2] [1] points to D, the 1th index among codewords of length 2. A table representing
this data is shown in Table 4.

Length (i) | min_cwli] cw_to_charfi][ |
2 0 A D,

3 6 E

1 14 B, C

Table 4: A table of the necessary information for canonical decoding.

This table can be encoded in a known-length bitstring of sum_through(1, n) + log2(n) *




a bits, where n is the maximum length of any codeword and a is the number of symbols in the
alphabet being used.

Now, to decode, the encoded bitstring is read and appended one bit at a time to a buffer
cw_buffer until a codeword is completed. Then, the codeword is decoded, the resulting symbol
is appended to toe output, and cw_buffer is cleared. This repeats until the full string has been
decoded. Since the minimum value of the codeword for any length is known, the numerical value
of the current buffer is compared to the minimum codeword of that length. If it is less than the
minimum codeword, another bit is appended to the buffer and the process continues. If it is at
least the minumum codeword value, then the current buffer could be a codeword, so it is searched
for in cw_to_char[len(x)] [j] where j is the numerical value of cw_buffer minus the numerical
value of the smallest codeword of length i. The pseudocode for this is written below for clarity,
but the actual code can be found in the appendix.

if numerical_value(x) >= min_cw[len(x)]

buffer may be codeword

find codeword in cw_to_char[len(x)] [numerical_value(x) - min_cw(len(x))]
else:

append next bit in encoded bitstring to cw_buffer and re-check for isCodeWord

In this way, the entire original message can be reconstructed while prepending a limited amount
of data to convey the encoding.

Using our program, we tried encoding and recovering both one of our heavily-used online sources
for this work, and the Python code itself. The Scranton Canonical Huffman Coding page was
reduced from 27.8 to 17.8 KB, a 36% reduction. huffman.py was reduced from 5.65 to 3.52 KB, a
38% reduction. When decoded, the former rendered as an identical web page, and the latter could
be run again on itself.



2 Minimax Algorithm With Tic-Tac-Toe Trees

2.1 What is Minimax?

The Minimax algorithm is an algorithm that is typically used to find optimal moves in a 2-player,
turn based game such as Chess, Connect-Four, Mancala, or tic-tac-toe. In this algorithm, every
game/board state has a value associated with it which represents which player the current board
state benefits. The larger the number, the more it benefits one player and the smaller the number,
the more it benefits the other player. Because of this, one player is always trying to make the moves
that would maximize the value and the other is trying to minimize the value. These players are
known as the maximizer and minimizer respectively. In most applications, the value is centered
around 0 so values greater than 0 imply the maximizer is favored and values less than 0 imply the
minimizer is favored. These values are generated by some heuristic that varies from game to game.

To use the Minimax algorithm, your graph needs to be set up as a tree where the nodes
represent game states and each edge represents the singular move needed to get from the parent
state to the child state. In order to generate values for each node, you want to recursively take
either the maximum (if it’s the maximizer’s turn at the node you are at) or the minimum (if it’s
the minimizer’s turn to act) value of the children of the node you are looking at. The base case
of this, when a node doesn’t have any children nodes, is where the heuristic comes into play. The
heuristic is applied to the leaf nodes and the resulting values are propagated back up the tree as
appropriate. The resulting tree allows for each move to have a value associated with it and makes
it very easy for both the maximizer and minimizer to find their optimal move to play.

2.2 Using Minimax for Tic-Tac-Toe

The Minimax algorithm, as described above, can be used to find the best moves in a tic-tac-toe
game, and create an unbeatable Al.

We can start by giving each ending board a value based on whether it shows a tie, win, or loss
for X. A win for us (X) when there are no blanks remaining (such as in Board 9 in Figure 2) we
can give the value of 1. A tie would receive a value of 0. Any situation where the opponent (O)
wins we would value as negative. To encourage the algorithm to choose paths that lead to quicker
wins, we add a point for each blank space at the win and subtract 1 for each blank space at a loss.
For example, Board 3, where O wins with 1 space remaining, is valued at a -2, and Board 5, where
X wins with 2 spaces remaining, is valued at a 3. We then pass these final values up the tree to
give each decision a weight.

We assume that O will choose the minimum weight decision and X should choose the maximum
weight decision. If the opponent encounters Figure 2’s Board 2, they have the choice between the
move that creates Board 3, weighted -2, or the move that creates Board 4, weighted 0. They should
choose the minimum weight (-2) and win the game. Similarly, if they encounter Board 7, they
could move to create Board 8, weighted 1, or Board 10, weighted 0. They should choose the move
of minimum weight (0) and tie rather than lose.

If X encounters Board 1 (from Figure 2), they have 3 choices for where to place their next
marker. These are represented by the red arrows, with the weights for each choice in the grey
boxes beside each arrow. Moving to create Board 2 is weighted -2, because it allows O to win on
the next turn. Moving to create Board 6 is weighted 3, because it instantly awards a win to X,
with 2 blank spaces left. Moving to create Board 7 is weighted 0, because although it is possible
that X would still win, the best move for O would force a tie. X should choose the maximum (3)
and win the game. This also means that the weight of the decision that leads to Board 1 is 3.



The weights would propagate up the whole tic-tac-toe tree as explained above, giving a computer
program with this algorithm a clear way to assess the goodness of each possible move and make
the best move for any game state.
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Figure 2: The tic-tac-toe tree below the shown starting configuration (la-
beled Board 1). This tree shows all possible games that stem from the
configuration achieved in Board 1. Red arrows represent possible moves
by X, and blue arrows represent possible moves by O. The numbers in grey
boxes represent the weight given to that choice by the Minimax algorithm.

2.3 Possibilities for Implementation

We were originally going to implement the algorithm described in section 2.2 (and actually started
writing the Matlab code for it), but realized a full implementation and write-up for something we
just learned about might be over-scoped for the time we had to complete the assignment. Instead,
we will explain how we planned to implement the algorithm.

Tic-Tac-Toe has a relatively small amount of possible board states so we were going to initially
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generate a tree that mapped out all the possible game states and the paths to get to each. Once we
had this, the plan was to write a recursive function to go through and assign values to each node
using the Minimax algorithm as explained above. From here we would be able to use that tree to
create a bot that we could play Tic-Tac-Toe against and, if we did everything correctly, we should
not be able to ever win against it.

2.3.1 Optimizations

Minimax by itself, while very accurate, is not the most efficient algorithm. There are certain opti-
mizations that you can make that would make the algorithm run much faster. Below are two such
optimizations that we looked into.

Alpha-Beta Pruning: Alpha-Beta pruning is a way to selectively cut branches (and their re-
spective sub trees) off of the tree which can lead to a significant speed up in the computation time.
To implement this optimization, you need to start keeping track of the maximum and minimum
available options at each node of the tree. If, while you are calculating the value of a node, you
run in to a case where there can’t be a better value in the rest of the subtree, you can prune that
subtree off the parent tree and not devote any computation time to it.

Memoization: Memoization can be used to speed up the recursive element of the Minimax
algorithm by caching the outcome of running minimax on a subtree. If we ever run into that subtree
again anywhere in the tree, and we will since there are multiple ways to arrive at the same board
state, we already have the values for the subtree stored so instead of re-calculating the whole thing,
we just have to fill it in. This can be further used to speed up the computation more when we
factor in board rotations. If we take any board state and rotate it 90, 180, or 270 degrees, the
board looks completely different to the algorithm but the subtrees would essentially be isomorphic
(the same values would be found in the subtree just in different orders). Using memoization, we
could also take these cases into account and speed the computation up even more.

3 Resources

Huffman Coding Wikipedia
Canonical Huffman Coding Wikipedia
Scranton Canonical Huffman Coding Page

Minimax Wikipedia

Kylie Ying’s Video

Sebastian Lague’s Video

Geeks for Geeks Alpha-Beta Pruning

4 Appendix

4.1 Program for encoding and decoding byte files using a canonical Huffman
code

# huffman.py

from heapdict import heapdict


https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Canonical_Huffman_code
https://www.cs.scranton.edu/~mccloske/courses/cmps340/huff_canonical_dec2015.html
https://en.wikipedia.org/wiki/Minimax
https://youtu.be/fT3YWCKvuQE
https://youtu.be/l-hh51ncgDI
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning/

from collections import Counter

CHAR_BITS = 8
MAX_CODE_LEN = CHAR_BITS * 2
MAX_CHARS = 2 *x CHAR_BITS

class Node:
def __init__(self, char, children = []):
self.alphabet = ["0", "1"]
if len(children) > len(self.alphabet):
raise

self.char = char

self.children = {code_char: child for code_char, child in zip(self.

alphabet, children)}

def __repr__(self):
return str(self.char)

def hash__(self):

return hash(self.char)

def print(self, code_word=""):
for code_char, child in self.children.items():
child.print(" " + code_word + str(code_char))

def huffman_encode (original):
root = make_huffman_tree(original)
code_dict = {}
make_code (root, "", code_dict)
code_dict = canonize_encoding(code_dict)
encoding_string = gen_canonical_code_string(code_dict)
encoded = encode_orig(original, code_dict)
return encoding_string + encoded

def huffman_decode (encoded):

encoded_msg, min_cw, cw_to_char = reconstruct_table_from_encoded (encoded)

return reconstruct_orig_from_table(encoded_msg, min_cw, cw_to_char)

5 def make_huffman_tree(original):

alphabet=["0", "1"]

freqs = Counter (list(original))

priority_queue = heapdict ()

for char, freq in freqgs.items():
node = Node (char)

priority_queue[node] = freq
while len(priority_queue) > 1:
freq_sum = 0

children = []
for code_char in alphabet:
if len(priority_queue) == O0:
break
child_node, freq = priority_queue.popitem()
freq_sum += freq
children.append(child_node)
parent_node = Node(None, children)



def

def

def

; def

priority_queue [parent_node] = freq_sum
return list(priority_queue) [0]

make_code (node, code_word="", dictionary=None):
if node.char:

dictionary[node.char] = code_word
else:

for code_char, child in node.children.items () :
make_code (child, code_word + str(code_char),

canonize_encoding (code_dict):

dictionary = {}

pairs = list(code_dict.items())
pairs.sort(key=lambda item:item[0])
pairs.sort(key=lambda item:len(item[1]))
curr_code_word_decimal = 0

last_len = 0

for char, code_word in pairs:

orig_len = len(code_word)
new_code_word = bin(curr_code_word_decimal) [2:]
if orig_len > last_len:

new_code_word += "O0" * (orig_len - last_len)
new_code_word = new_code_word.zfill(orig_len)
dictionary [char] = new_code_word
last_len = orig_len
curr_code_word_decimal = int(new_code_word, 2)

curr_code_word_decimal += 1
return dictionary

gen_canonical_code_string (code_dict):
cw_to_char_str = ""

counter = 0

pairs = list(code_dict.items ())
pairs.sort(key=lambda item: item[0])

dictionary)

min_cw = ["1" % i for i in range(l, MAX_CODE_LEN + 1)]

while counter < MAX_CHARS and len(pairs) > O0:

if pairs[0][0] == chr(counter):
char, code_word = pairs.pop(0)
length = len(code_word)
min_cw[length-1] = min(code_word, min_cw[length-1])
cw_to_char_str += f"{length:04b}"

else:
cw_to_char_str += "0" * 4

counter += 1

min_cw_str = "".join(min_cw)

cw_to_char_str += "O" * (MAX_CHARS * 4 - len(cw_to_char_str))

return min_cw_str + cw_to_char_str

encode_orig(original, code_dict):
encoded = ""
for char in original:

encoded += code_dict [char]
return encoded

120 def reconstruct_table_from_encoded (encoded):



min_cw_str_len = MAX_CODE_LEN * (MAX_CODE_LEN + 1) // 2
min_cw_str = encoded[:min_cw_str_len]
cw_to_char_str = encoded[min_cw_str_len:min_cw_str_len+4*xMAX_CHARS]
encoded_msg = encoded[min_cw_str_len+4*xMAX_CHARS:]

min_cw = []
for cw_len in range (1,

for i in range (MAX_CHARS):

char = chr (i)
bitlength_chunk =

bitlength = int(bitlength_chunk,

if bitlength > O0:

MAX_CODE_LEN+1) :
code_word, min_cw_str = min_cw_str[:cw_len], min_cw_str[cw_len:]
min_cw.append (code_word)

cw_to_char = [[] for i in range (MAX_CODE_LEN)]

# for every character in the key

cw_to_char_str[i*4:ix4+4]

2)

cw_to_char[bitlength-1].append(char)

return encoded_msg, min_cw,

def reconstruct_orig_from_table(encoded_msg,

idx = 0
cw_buffer = ""
original = ""

while idx < len(encoded_msg):
cw_buffer += encoded_msg[idx]

idx += 1

cw_to_char

min_cw, cw_to_char):

# if value of code_word is at least value of min code_word
length = len(cw_buffer)

i = length - 1
j = int(cw_buffer, 2) - int(min_cwl[i], 2)
if 0 <= j < len(cw_to_char[i]):

char = cw_to_char[i][j]

original += char

cw_buffer = ""
return original

7 def bitstring_to_bytes(s):
# From https://stackoverflow.com/questions/32675679/convert-binary-string-to-

bytearray-in-python-3

return int(s, 2).to_bytes((len(s) + 7) // 8,

fname = input("Enter a file name: ")
with open(fname, "r+") as f:

original = f.read()

encoded = huffman_encode (original)

recovered = huffman_decode (encoded)
name, ext = fname.split(".")
fname_encoded = name + "_encoded" + "."
with open(fname_encoded, "wb+") as f:

f.write(bitstring_to_bytes (encoded))

fname_recovered = name + "
with open(fname_recovered,
f.write(recovered)

_recovered"
"w+") as f:

+

+ ext

non

10

+ ext

byteorder="big")
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4.2 Recursive function for the creation of the complete tic-tac-toe game tree

We wrote this Matlab function before we realized that implementing the entire Minimax algorithm
for tic-tac-toe would be over-scoped for this project.

function addChildBoards (parent ,parentBoardIndex)
% parent: 3x3 uint8 matrix representing a board (0O=blank, 1=X, 2=0)
% parentBoardIndex: int representing the location of "parent" in "allBoards"
% addChildBoards () is a recursive function that takes in a parent board
% and its index, and adds all of its child boards to the master list of
% boards "allBoards" and records the indexes of the parent board for each
% board it creates in the "parentIndexes" array

global nextBlankBoard allBoards parentIndexes

% Find the number of 0’s in the parent board
numBlanks = length(find (“parent));

%» If there are no open spaces, end the game
if numBlanks < 1

return
end

% Choose who’s turm it is (1==X 2==0)

if (mod (numBlanks ,2) == 1)
newChar = 1;

else
newChar = 2;

end

% Itterate through board
for i = 1:3
for j = 1:3
% Check if spot is empty

if (parent(i,j) == 0)
% Clone parent board as a new node
newLayer = uint8(parent);
% Add next move to selected spot
newLayer (i, j) = newChar;
% Add new board to allBoards list
allBoards(:,:,nextBlankBoard) = newLayer;
% Record the parent board of the new board
parentIndexes (nextBlankBoard) = parentBoardIndex;
nextBlankBoard = nextBlankBoard + 1;

% Run function again on the child
addChildBoards (newLayer ,nextBlankBoard-1) ;
end
end
end
end
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